Historically, human-induced alteration was not universally seen as a problem. In particular, dams and other stream-channel "improvements" were a common activity of municipal and federal engineering works of the mid-20th century (Williams and Wolman, 1984). "Flood control" implied a betterment of conditions, at least for streamside residents (Chang, 1992). And fisheries "enhancements," commonly reflected by massive infrastructure for hatcheries or artificial spawning channels, were once seen as unequivocal benefits for fish populations (White, 1996; Levin et al., 2001).

By almost any currently applied metric, however, the net result of human alteration of the landscape to date has resulted in a degradation of the conditions in downstream watercourses. Many prior researchers, particularly when considering ecological conditions and metrics, have recognized a crude but monotonically declining relationship between human-induced landscape alteration and downstream conditions (e.g., Figure 1-2; Horner et al., 1997; Davies and Jackson, 2006). These include metrics of physical stream-channel conditions (e.g., Bledsoe and Watson, 2001), chemical constituents (e.g., Figure 1-3; House et al., 1993), and biological communities (e.g., Figure 1-4; Steedman, 1988; Wang et al., 1997).

The association between watercourse degradation and landscape alteration in general, and urban development in particular, seems inexorable. The scientific and regulatory challenge of the last three decades has been to decouple this relationship, in some cases to reverse its trend and in others to manage where these impacts are to occur.

FIGURE 1-2 Conceptual model (left) and actual response (right) of a biological system's response to stress. The "Urban Gradient of Stressors" might be a single metric of urbanization, such as percent watershed impervious or road density; the "Biological Indicator" may be singlemetric or multi-metric measures of the level of disturbance in an aquatic community. The rightdeclining line traces the limits of a "factor-ceiling distribution" (Thomson et al., 1986), wherein individual sites (i.e., data points) have a wide range of potential values for a given position along the urban gradient but are not observed above a maximum possible limit of the biological index. The right-hand graph illustrates actual biological responses, using a biotic index developed to show responses to urban impacts plotted against a standardized urban gradient comprising urban land use, road density, and population. SOURCE: Davies and Jackson (2006) (left) and Barbour et al. (2006) (right). Left figure, reprinted, with permission, Davies and Jackson (2006). Copyright by the Ecological Society of America. Right figure, reprinted, with permission, Barbour et al. (2006). Copyright by the Water Environment Research Foundation.

FIGURE 1-3 Example relationships between road density (a surrogate measure of urban development) and common water quality constituents. Direct causality is not necessarily implied by such relationships, but the monotonic increase in concentrations with increasing "urbanization," however measured, is near-universal. SOURCE: Reprinted, with permission, from Chang and Carlson (2005). Copyright 2005 by Springer.

FIGURE 1-4 Plots of Effective Impervious Area (EIA, or "connected imperviousness") against metrics of biologic response in fish populations. SOURCE: Reprinted, with permission, from Wang et al. (2001). Copyright 2001 by Springer.

PREPUBLICATION

16

WHAT'S WRONG WITH THE NATION'S WATERS?

Since passage of the Water Quality Act of 1948 and the Clean Water Act (CWA) of 1972, 1977, and 1987, water quality in the United States has measurably improved in the major streams and rivers and in the Great Lakes. However, substantial challenges and problems remain. Major reporting efforts that have examined state and national indicators of condition, such as CWA 305(b) reports (EPA, 2002) and the Heinz State of the Nation's Ecosystem report (Heinz Center, 2002), or environmental monitoring that was designed to provide statistically valid estimates of condition (e.g., National Wadeable Stream Assessment; EPA, 2006), have confirmed widespread impairments related to diffuse sources of pollution and stressors.

The National Water Quality Inventory (derived from Section 305b of the CWA) compiles data in relation to use designations and water quality standards. As discussed in greater detail in Chapter 2, such standards include both (1) a description of the use that a waterbody is supposed to achieve (such as a source of drinking water or a cold water fishery) and (2) narrative or numeric criteria for physical, chemical, and biological parameters that allow the designated use to be achieved. As of 2002, 45 percent of assessed streams and rivers, 47 percent of assessed lakes, 32 percent of assessed estuarine areas, 17 percent of assessed shoreline miles, 87 percent of near-coastal ocean areas, 51 percent of assessed wetlands, 91 percent of assessed Great Lakes shoreline miles, and 99 percent of assessed Great Lakes open water areas were not meeting water quality standards set by the states (2002 EPA Report to Congress).¹

The U.S. Environmental Protection Agency (EPA) has also embarked on a five-year statistically valid survey of the nation's waters

(http://www.epa.gov/owow/monitoring/guide.pdf). To date, two waterbody types—coastal areas and wadeable streams—have been assessed. The most recent data indicate that 42 percent of wadeable streams are in poor biological condition and 25 percent are in fair condition (EPA, 2006). The overall condition of the nation's estuaries is generally fair, with Puerto Rico and Northeast Coast regions rated poor, the Gulf Coast and West Coast regions rated fair, and the Southeast Coast region rated good to fair (EPA, 2007). These condition ratings for the National Estuary Program are based on a water quality index, a sediment quality index, a benthic index, and a fish tissue contaminants index.

The impairment of waterbodies is manifested in a multitude of ways. Indeed, EPA's primary process for reporting waterbody condition (Section 303(d) of the CWA—see Chapter 2) identifies over 200 distinct types of impairments. As shown in Table 1-1, these have been categorized into 15 broad categories, encompassing about 94 percent of all impairments. 59,515 waterbodies fall into one of the top 15 categories, while the total reported number of waterbodies impaired from all causes is 63,599 (which is an underestimate of the actual total because not all waterbodies are assessed). Mercury, microbial pathogens, sediments, other metals, and nutrients are the major pollutants associated with impaired waterbodies nationwide. These constituents have direct impacts on aquatic ecosystems and public health, which form the basis of the water quality standards set for these compounds. Sediments can harm fish and macroinvertebrate communities by introducing sorbed contaminants, decreasing available light in streams, and smothering fish eggs. Microbial pathogens can cause disease to humans via both ingestion and dermal contact and are frequently cited as the cause of beach closures and other recreational

¹ EPA does not yet have the 2004 assessment findings compiled in a consistent format from all the states. EPA is also working on processing the states 2006 Integrated Reports as the 303(d) portions are approved and the states submit their final assessment findings. Susan Holdsworth, EPA, personal communication, September 2007.

water hazards in lakes and estuaries. Nutrient over-enrichment can promote a cascade of events in waterbodies from algal blooms to decreases in dissolved oxygen and associated fish kills. Metals like mercury, pesticides, and other organic compounds that enter waterways can be taken up by fish species, accumulating in their tissues and presenting a health risk to organisms (including humans) that consume the fish.

However, Table 1-1 can be misleading if it implies that degraded *water quality* is the primary metric of impairment. In fact, many of the nation's streams, lakes, and estuaries also suffer from fundamental changes in their flow regime and energy inputs, alteration of aquatic habitats, and resulting disruption of biotic interactions that are not easily measured via pollutant concentrations. Such waters may not be listed on State 303(d) lists because of the absence of a corresponding water quality standard that would directly indicate such conditions (like a biocriterion). Figure 1-5A, B, and C show examples of such impacted waterbodies.

Over the years, the greatest successes in improving the nation's waters have been in abating the often severe impairments caused by municipal and industrial point source discharges. The pollutant load reductions required of these facilities have been driven by the National Pollutant Discharge Elimination System (NPDES) permit requirements of the CWA (see Chapter 2). Although the majority of these sources are now controlled, further declines in water quality remain likely if the land-use changes that typify more diffuse sources of pollution are not addressed (Palmer and Allan, 2006). These include land-disturbing agricultural, silvicultural, urban, industrial, and construction activities from which hard-to-monitor pollutants emerge during wet-weather events. Pollution from these landscapes has been almost universally acknowledged as the most pressing challenge to the restoration of waterbodies and aquatic

Cause of Impairment	Number of Waterbodies	Percent of the Total
Mercury	8,555	14%
Pathogens	8,526	14%
Sediment	6,689	11%
Metals (other than mercury)	6,389	11%
Nutrients	5,654	10%
Oxygen depletion	4,568	8%
рН	3,389	6%
Cause unknown - biological integrity	2,866	5%
Temperature	2,854	5%
Habitat alteration	2,220	4%
PCBs	2,081	3%
Turbidity	2,050	3%
Cause unknown	1,356	2%
Pesticides	1,322	2%
Salinity/TDS/chlorides	996	2%

TABLE 1-1 Top 15 Categories of Impairment Requiring CWA Section 303(d) Action

Note: "Waterbodies" refers to individual river segments, lakes, and reservoirs. A single waterbody can have multiple impairments. Because most waters are not assessed, however, there is no estimate of the number of unimpaired waters in the United States. SOURCE: EPA, National Section 303(d) List Fact Sheet (http://iaspub.epa.gov/waters/national_rept.control). The data are based on three-fourths of states reporting from 2004 lists, with the remaining from earlier lists and one state from a 2006 list.

FIGURE 1-5A Headwater tributary in Philadelphia suffering from Urban Stream Syndrome. SOURCE: Courtesy of Chris Crockett, City of Philadelphia Water Department (2007).

FIGURE 1-5B A destabilized stream in Vermont. SOURCE: Courtesy of Pete LaFlamme, Vermont Department of Environmental Conservation.

FIGURE 1-5C An urban stream, the Lower Oso Creek in Orange County, California, following a storm event. Oso Creek was formerly an ephemeral stream, but heavy development in the contributing watershed has created perennial flow—stormwater flow during wet weather and minor wastewater discharges and authorized non-stormwater discharges such as landscape irrigation runoff during dry weather. Courtesy of Eric Stein, Southern California Coastal Research Water Project.

ecosystems nationwide. All population and development forecasts indicate a continued worsening of the environmental conditions caused by diffuse sources of pollution under the nation's current growth and land-use trajectories.

Recognition of urban stormwater's role in the degradation of the nation's waters is but the latest stage in the history of this byproduct of the human environment. Runoff conveyance systems have been part of cities for centuries, but they reflected only the desire to remove water from roads and walkways as rapidly and efficiently as possible. In some arid environments, rainwater has always been collected for irrigation or drinking; elsewhere it has been treated as an unmetered, and largely benign, waste product of cities. Minimal (unengineered) ditches or pipes drained developed areas to the nearest natural watercourse. Where more convenient, stormwater shared conveyance with wastewater, eliminating the cost of a separate pipe system but commonly resulting in sewage overflows during rainstorms. Recognition of downstream flooding that commonly resulted from upstream development led to construction of stormwater storage ponds or vaults in many municipalities in the 1960s, but their performance has typically fallen far short of design objectives (Booth and Jackson, 1997; Maxted and Shaver, 1999; Nehrke and Roesner, 2004). Water-quality treatment has been a relatively recent addition to the management of stormwater, and although a significant fraction of pollutants can be removed through such efforts (e.g., Strecker et al., 2004; see http://www.bmpdatabase.org), the constituents remaining even in "treated" stormwater represent a substantial, but largely unappreciated, impact to downstream watercourses.

Of the waterbodies that have been assessed in the United States, impairments from urban runoff are responsible for about 38,114 miles of impaired rivers and streams, 948,420 acres of impaired lakes, 2,742 square miles of impaired bays and estuaries, and 79,582 acres of impaired wetlands (2002 305(b) report). These numbers must be considered an underestimate, since the urban runoff category does not include stormwater discharges from municipal separate storm sewer systems (MS4s) and permitted industries, including construction. Urban stormwater is listed as the "primary" source of impairment for 13 percent of all rivers, 18 percent of all lakes, and 32 percent of all estuaries (2000 305(b) report). Although these numbers may seem low, urban areas cover just 3 percent of the land mass of the United States (Loveland and Auch, 2004), and so their influence is disproportionately large. Indeed, developed and developing areas that are a primary focus of stormwater regulations contain some of the most degraded waters in the country. For example, in Ohio few sites with greater than 27 percent imperviousness can meet interim CWA goals in nearby waterbodies, and biological degradation is observed with much less urban development (Miltner et al., 2004). Numerous authors have found similar patterns (see Meyer et al., 2005).

Although no water quality inventory data have been made available from the EPA since 2002, the dimensions of the stormwater problem can be further gleaned from several past regional and national water quality inventories. Many of these assessments are somewhat dated and are subject to the normal data and assessment limitations of national assessment methods, but they indicate that stormwater runoff has a deleterious impact on nearly all of the nation's waters. For example:

- Harvesting of shellfish is prohibited, restricted, or conditional in nearly 40 percent of all shellfish beds nationally due to high bacterial levels, and urban runoff and failing septic systems are cited as the prime causes. Reopening of shellfish beds due to improved wastewater treatment has been more than offset by bed closures due to rapid coastal development (NOAA, 1992; EPA, 1998).
- In 2006 there were over 15,000 beach closings or swimming advisories due to bacterial levels exceeding health and safety standards, with polluted runoff and stormwater cited as the cause of the impairment 40 percent of the time (NRDC, 2007).
- Pesticides were detected in 97 percent of urban stream water samples across the United States, and exceeded human health and aquatic life benchmarks 6.7 and 83 percent of the time, respectively (USGS, 2006). In 94 percent of fish tissues sampled in urban areas nationwide, organochlorine compounds were detected.
- Urban development was responsible for almost 39 percent of freshwater wetland loss (88,960 acres) nationally between 1998 and 2004 (Dahl, 2006), and the direct impact of stormwater runoff in degrading wetland quality is predicted to affect an even greater acreage (Wright et al., 2006).
- Eastern brook trout are present in intact populations in only 5 percent of more than 12,000 subwatersheds in their historical range in eastern North America, and urbanization is cited as a primary threat in 25 percent of the remaining subwatersheds with reduced populations (Trout Unlimited, 2006).

PREPUBLICATION

EPA-BAFB-00001243

- Increased flooding is common throughout urban and suburban areas, sometimes as a consequence of improperly sited development (Figure 1-6A) but more commonly as a result of increasing discharges over time resulting from progressive urbanization farther upstream (Figure 1-6B). According to FEMA (undated), property damage from all types of flooding, from flash floods to large river floods, averages \$2 billion a year.
- The chemical effects of stormwater runoff are pervasive and severe throughout the nation's urban waterways, and they can extend far downstream of the urban source. Stormwater discharges from urban areas to marine and estuarine waters cause greater water column toxicity than similar discharges from less urban areas (Bay et al., 2003).
- A variety of studies have shown that stormwater runoff is a vector of pathogens with potential human health implications in both freshwater (Calderon et al., 1991) and marine waters (Dwight et al., 2004; Colford et al., 2007).

FIGURE 1-6 (A) New residential construction in the path of episodic stream discharge (Issaquah, Washington); (B) recent flooding of an 18th-century tavern in Collegeville, Pennsylvania following a storm event in an upstream developing watershed. SOURCES: Derek Booth, Stillwater Sciences, Inc., and Robert Traver, Villanova University.

WHY IS IT SO HARD TO REDUCE THE IMPACTS OF STORMWATER?

"Urban stormwater" is the runoff from a landscape that has been affected in some fashion by human activities, during and immediately after rain. Most visibly, it is the water flow over the ground surface, which is collected by natural channels and artificial conveyance systems (pipes, gutters, and ditches) and ultimately routed to a stream, river, lake, wetland, or ocean. It also includes water that has percolated into the ground but nonetheless reaches a stream channel relatively rapidly (typically within a day or so of the rainfall), contributing to the high discharge in a stream that commonly accompanies rainfall. The subsurface flow paths that contribute to this stormflow response are typically quite shallow, in the upper layers of the soil, and are sometimes termed "interflow." They stand in contrast to deeper groundwater paths, where water moves at much lower velocities by longer paths and so reaches the stream slowly, over periods of days, weeks, or months. This deeper flow sustains streamflow during rainless periods and is usually called baseflow, as distinct from "stormwater." A formal distinction between these types

Introduction

of runoff is sometimes needed for certain computational procedures, but for most purposes a qualitative understanding is sufficient.

These runoff paths can be identified in virtually all modified landscapes, such as agriculture, forestry, and mining. However, this report focuses on those settings with the particular combination of activities that constitute "urbanization," by which we mean to include the commonly understood conversion (whether incremental or total) of a vegetated landscape to one with roads, houses, and other structures.

Although the role of urban stormwater in degrading the nation's waters has been recognized for decades (e.g., Klein, 1979), reducing that role has been notoriously difficult. This difficulty arises from three basic attributes of what is commonly termed "stormwater":

- 1. It is produced from literally everywhere in a *developed* landscape;
- 2. Its production and delivery are episodic, and these fluctuations are difficult to attenuate; and
- 3. It accumulates and transports much of the collective waste of the urban environment.

Wherever grasslands and forest are replaced by urban development in general, and impervious surfaces in particular, the movement of water across the landscape is radically altered (see Figure 1-7). Nearly all of the associated problems result from one underlying cause: loss of the water-retaining function of the soil and vegetation in the urban landscape. In an undeveloped, vegetated landscape, soil structure and hydrologic behavior are strongly influenced by biological activities that increase soil porosity (the ratio of void space to total soil volume) and the number and size of macropores, and thus the storage and conductivity of water as it moves through the soil. Leaf litter on the soil surface dissipates raindrop energy; the soil's organic content reduces detachment of small soil particles and maintains high surface or is evapotranspired by vegetation, except during particularly intense rainfall events (Dunne and Leopold, 1978).

In the urban landscape, these processes of evapotranspiration and water retention in the soil may be lost for the simple reason that the loose upper layers of the soil and vegetation are gone stripped away to provide a better foundation for roads and buildings. Even if the soil still exists, it no longer functions if precipitation is denied access because of paving or rooftops. In either case, a stormwater runoff reservoir of tremendous volume is removed from the stormwater runoff system; water that may have lingered in this reservoir for a few days or many weeks, or been returned directly to the atmosphere by evaporation or transpiration by plants, now flows rapidly across the land surface and arrives at the stream channel in short, concentrated bursts of high discharge.

This transformation of the hydrologic regime from one where subsurface flow once dominated to one where overland flow now dominates is not simply a readjustment of runoff flow paths, and it does not just result in a modest increase in flow volumes. It is a wholesale reorganization of the processes of runoff generation, and it occurs throughout the developed landscape. As such, it can affect every aspect of that runoff (Leopold, 1968)—not only its rate of production, its volume, and its chemistry, but also what it indirectly affects farther downstream (Walsh et al., 2005a). This includes erosion of mobile channel boundaries, mobilization of oncestatic channel elements (e.g., large logs), scavenging of contaminants from the surface of the urban landscape, and efficient transfer of heat from warmed surfaces to receiving waterbodies. These changes have commonly inspired human reactions—typically with narrow objectives but carrying

PREPUBLICATION

23

FIGURE 1-7 Schematic of the hydrologic pathways in humid-region watersheds, before and after urban development. The sizes of the arrows suggest relative magnitudes of the different elements of the hydrologic cycle, but conditions can vary greatly between individual catchments and only the increase in surface runoff in the post-development condition is ubiquitous. SOURCE: Adapted from Schueler (1987) and Maryland Department of the Environment; http://www.mde.state.md.us/Programs/WaterPrograms.

additional, far-ranging consequences—such as the piping of once-exposed channels, bank armoring, and construction of large open-water detention ponds (e.g., Lieb and Carline, 2000).

This change in runoff regime is also commonly accompanied by certain land-use activities that have the potential to generate particularly harmful or toxic discharges, notably those commercial activities that are the particular focus of the industrial NPDES permits. These include manufacturing facilities, transport of freight or passengers, salvage yards, and a more generally defined category of "sites where industrial materials, equipment, or activities are exposed to stormwater" (e.g., EPA, 1992).

Other human actions are associated with urban landscapes that do not affect stormwater directly, but which can further amplify the negative consequences of altered flow. These actions include clearing of riparian vegetation around streams and wetlands, introduction of atmospheric pollutants that are subsequently deposited, inadvertent release of exotic chemicals into the environment, and channel crossings by roads and utilities. Each of these additional actions further degrades downstream waterbodies and increases the challenge of finding effective methods to reverse these changes (Boulton, 1999). There is little doubt as to why the problem of urban stormwater has not yet been "solved"—because every functional element of an aquatic ecosystem is affected. Urban stormwater has resulted in such widespread impacts, both physical and biological, in aquatic systems across the world that this phenomenon has been termed the "Urban Stream Syndrome" (see Figure 1-5; Walsh et al., 2005b).

Of the many possible ways to consider these conditions, Karr (1991) has recommended a simple yet comprehensive grouping of the major stressors arising from urbanization that influence aquatic assemblages (Figure 1-8). These include chemical pollutants (water quality and toxicity); changes to flow magnitude, frequency, and seasonality of various discharges; the

Introduction

physical aspects of stream, lake, or wetland habitats; the energy dynamics of food webs, sunlight, and temperature; and biotic interactions between native and exotic species. Stormwater and stormwater-related impacts encompass all of these categories, some directly (e.g., water chemistry) and some indirectly (e.g., habitat, energy dynamics). Because of the wide-ranging effects of stormwater, programs to abate stormwater impacts on aquatic systems must deal with a broad range of impairments far beyond any single altered feature, whether traditional water-chemistry parameters or flow rates and volumes.

FIGURE 1-8 Five features that are affected by urban development and, in turn, affect biological conditions in urban streams. SOURCES: Modified from Karr (1991), Karr and Yoder (2004), and Booth (2005). Reprinted, with permission, from Karr (1991). Copyright 2001 by Ecological Society of America. Reprinted, with permission, from Karr and Yoder (2004). Copyright 2004 by American Society of Civil Engineers. Reprinted, with permission, from Booth (2005). Copyright 2005 by the North American Benthological Society.

The broad spatial scale of where and how these impacts are generated suggests that solutions, if effective, should be executed at an equivalent scale. Although the "problem" of stormwater runoff is manifested most directly as an altered hydrograph or elevated concentrations of pollutants, it is ultimately an expression of land-use change at a landscape scale. Symptomatic solutions, applied only at the end of a stormwater collection pipe, are not likely to prove fully effective because they are not functioning at the scale of the original disturbance (Kloss and Calarusse, 2006).

The landscape-scale generation of stormwater has a number of consequences for any attempt to reduce its effects on receiving waters, as described below.

Sources and Volumes

The "source" of stormwater runoff is dispersed, making collection and centralized treatment challenging. To the extent that collection is successful, however, the flip side of this

PREPUBLICATION

25

EPA-BAFB-00001247

condition—very large volumes—becomes manifest. Either an extensive infrastructure brings stormwater to centralized facilities, whose operation and maintenance may be relatively straightforward (e.g., Anderson et al., 2002) but of modest effectiveness, or stormwater remains dispersed for management, treatment, or both across the landscape (e.g., Konrad and Burges, 2001; Holman-Dodds et al., 2003; Puget Sound Action Team, 2005; Walsh et al., 2005a; Bloom, 2006; van Roon, 2007), better mimicking the natural processes of runoff generation but requiring a potentially unlimited number of "facilities" that may have their own particular needs for space, cost, and maintenance.

Treatment Challenges

Regardless of the scale at which treatment is attempted, technological difficulties are significant because of the variety of "pollutants" that must be addressed. These include physical objects, from large debris to microscopic particles; chemical constituents, both dissolved and immiscible; and less easily categorized properties such as temperature. Wastewater treatment plants manage a similarly broad range of pollutants, but stormwater flows have highly unsteady inflows and, when present, typically much greater volumes to treat.

Industrial sources of stormwater pose a particularly challenging problem because potential generators of polluted or toxic runoff are widespread and are regulated under NPDES permitting by their *activities*, not by the specific category of industrial activity under which they fall. This complicates any systematic effort to identify those entities that should be regulated (Duke et al., 1999). Even for the limited number of regulated generators, pollution prevention measures are of uncertain effectiveness.

Soil erosion from construction sites is another pollution source that has proven difficult to effectively control. Although most bare sites are relatively small and only short-lived, at any given time there can be many sites under construction, each of which can deliver sediment loads to downstream waterbodies at rates that exceed background levels by many orders of magnitude (e.g., Wolman and Schick, 1967). Relatively effective approaches and technologies exist to dramatically reduce the magnitude of these sediment discharges (e.g., Raskin et al., 2005), but they depend on conscientious installation and regular maintenance. Enforcement of such requirements, normally a low-priority activity of local departments of building or public works, is commonly lacking.

Another difference between the stormwater and wastewater streams is that stormwater treatment must address not only "pollutants" but also physically and ecologically deleterious changes in flow rate and total runoff volume. Treating these changes constitutes a particularly difficult task for two reasons. First, there is simply more runoff, as a rule, and so replicating the predevelopment hydrograph is not an option—the increased volume of runoff guarantees that some discharges, some of the time, must be allowed to increase. Second, there is little agreement on what constitutes "adequate" or "effective" treatment for the various attributes of flow. Even the most basic metrics, such as the magnitude of peak flow, can require extensive infrastructure to achieve (e.g., Booth and Jackson, 1997); other flow metrics that correlate more directly with undesired effects on physical and biological systems can require even greater efforts to match. In many cases, the urban-induced transformation of the flow regime makes true "mitigation" virtually impossible.

Widespread Cause and Effects

The spatial scale of stormwater generation and its impacts is wide-ranging. "Generators" are literally landscape-wide, and impacts can occur at every location in the path followed by urban runoff, from source to receiving waterbody (Hamilton et al., 2004). There are few ways to demonstrate causal connections between distributed landscape sources and cumulative downstream effects (Allan, 2004), and so site-specific mitigation typically provides little lasting improvement in the watershed as a whole (Maxted and Shaver, 1997).

Stormwater Measurements

The desired attributes of stormwater runoff are normally expressed through a combination of physical and chemical parameters. These parameters are commonly presumed to have direct correlation to attributes of human or ecological concern, such as the condition of human or fish communities, or the stability of a stream channel, even though these parameters do not directly measure those effects. The most commonly measured physical parameters are hydrologic and simply measure the rate of flow past a specified location. Both the absolute, instantaneous magnitude of that flow rate (i.e., the discharge) and the variations in that rate over multiple time scales (i.e., how rapidly the discharge varies over an hour, a day, a season, etc.) can be captured by analysis of a continuous time series of a flow. Obviously, however, a nearly unlimited number of possible metrics, capturing a multitude of temporal scales, could be defined (Poff et al., 1997, 2006; Cassin et al., 2004; Konrad et al., 2005; Roy et al., 2005; Chang, 2007). Commonly only a single parameter—the peak storm discharge for a given return period (Hollis, 1975)—has been emphasized in the past. Mitigation of urban-induced flow increases have followed this narrow approach, typically by endeavoring to reduce peak discharge by use of detention ponds but leaving the underlying increase in runoff volumes-and the associated augmentation of both frequency and duration of high discharges-untouched. This partly explains why evaluation of downstream conditions commonly document little improvement resulting from traditional flow-mitigation measures (e.g., Maxted and Shaver, 1997; Roesner et al., 2001; May and Horner, 2002).

Other physical parameters, less commonly measured or articulated, can also express the conditions of downstream watercourses. Measures of size or complexity, particularly for stream channels, are particularly responsive to the changes in flow regime and discharge. Booth (1990) suggested that discriminating between *channel expansion*, the proportional increase in channel cross-sectional area with increasing discharge, and *channel incision*, the catastrophic vertical downcutting that sometimes accompanies urban-induced flow increases, captures important endmembers of the physical response to hydrologic change. The former (proportional expansion) is more thoroughly documented (Hammer, 1972; Hollis and Luckett, 1976; Morisawa and LaFlure, 1982; Neller, 1988; Whitlow and Gregory, 1989; Booth and Jackson, 1997; Moscrip and Montgomery, 1997; Booth and Henshaw, 2001); the latter (catastrophic incision) is more difficult to quantify but has been recognized in both urban and agricultural settings (e.g., Simon, 1989). Both types of changes result not only in a larger channel but also in substantial simplification and loss of features normally associated with high-quality habitat for fish and other in-stream biota. The sediment released by these "growing channels" also can be the largest

PREPUBLICATION

27

EPA-BAFB-00001249

component of the overall sediment load delivered to downstream waterbodies (Trimble, 1997; Nelson and Booth, 2002).

Chemical parameters (or, historically, "water-quality parameters"; see Dinius, 1987; Gergel et al., 2002) cover a host of naturally and anthropogenically occurring constituents in water. In flowing water these are normally expressed as instantaneous measurements of concentration. In waterbodies with long residence times, such as lakes, these may be expressed as either concentrations or as loads (total accumulated amounts, or total amounts integrated over an extended time interval). The CWA defined a list of priority pollutants, of which a subset is regularly measured in many urban streams (e.g., Field and Pitt, 1990). Parameters that are not measured may or may not be present, but without assessment they are rarely recognized for their potential (or actual) contribution to waterbody impairment.

Other attributes of stormwater do not fit as neatly into the categories of water quantity or water quality. Temperature is commonly measured and is normally treated as a water quality parameter, although it is obviously not a chemical property of the water (LeBlanc et al., 1997; Wang et al., 2003). Similarly, direct or indirect measures of suspended matter in the water column (e.g., concentration of total suspended solids, or secchi disk depths in a lake) are primarily physical parameters but are normally included in water quality metrics. Flow velocity is rarely measured in either context, even though it too correlates directly to stream-channel conditions. Even more direct expressions of a flow's ability to transport sediment or other debris, such as shear stress or unit stream power, are rarely reported and virtually never regulated.

Urban runoff degrades aquatic systems in multiple ways, which confounds our attempts to define causality or to demonstrate clear linkages between mitigation and ecosystem improvement. It is generally recognized from the conceptual models that seek to describe this system that no single element holds the key to ecosystem condition. All elements must be functional, and yet every element can be affected by urban runoff in different ways. These impacts occur at virtually all spatial scales, from the site-specific to the landscape; this breadth and diversity challenges our efforts to find effective solutions.

This complexity and the continued growth of the built environment also present fundamental social choices and management challenges. Stormwater control measures entail substantial costs for their long-term maintenance, monitoring to determine their performance, and enforcement of their use—all of which must be weighed against their (sometimes unproven) benefits. Furthermore, the overarching importance of impervious surfaces inextricably links stormwater management to land-use decisions and policy. For example, where a reversal of the effects of urbanization cannot be realized, more intensive land-use development in certain areas may be a paradoxically appropriate response to reduce the overall impacts of stormwater. That is, increasing population density and impervious cover in designated urban areas may reduce the creation of impervious surface and the associated ecological impacts in areas that will remain undeveloped as a result. In these highly urban areas (with very high percentages of impervious surface), aquatic conditions in local streams will be irreversibly changed and the Urban Stream Syndrome may be unavoidable to some extent. Where these impacts occur and what effort and cost will be used to avoid these impacts are both fundamental issues confronting the nation as it attempts to address stormwater.

IMPETUS FOR THE STUDY AND REPORT ROADMAP

In 1972 Congress amended the Federal Water Pollution Control Act (subsequently referred to as the Clean Water Act) to require control of discharges of pollutants to waters of the United States from point sources. Initial efforts to improve water quality using NPDES permits focused primarily on reducing pollutants from industrial process wastewater and municipal sewage discharges. These point source discharges were clearly and easily shown to be responsible for poor, often drastically degraded conditions in receiving waterbodies because they tended to emanate from identifiable and easily monitored locations, such as pipe outfalls.

As pollution control measures for industrial process wastewater and municipal sewage were implemented and refined during the 1970s and 1980s, more diffuse sources of water pollution have become the predominant causes of water quality impairment, including stormwater runoff. To address the role of stormwater in causing water quality impairments, Congress included Section 402(p) in the CWA; this section established a comprehensive, twophase approach to stormwater control using the NPDES program. In 1990 EPA issued the Phase I Stormwater Rule (55 Fed. Reg. 47990; November 16, 1990) requiring NPDES permits for operators of municipal separate storm sewer systems (MS4s) serving populations over 100,000 and for runoff associated with industrial activity, including runoff from construction sites five acres and larger. In 1999 EPA issued the Phase II Stormwater Rule (64 Fed. Reg. 68722; December 8, 1999), which expanded the requirements to small MS4s in urban areas and to construction sites between one and five acres in size.

Since EPA's stormwater program came into being, several problems inherent in its design and implementation have become apparent. As discussed in more detail in Chapter 2, problems stem to a large extent from the diffuse nature of stormwater discharges combined with a regulatory process that was created for point sources (the NPDES permitting approach). These problems are compounded by the shear number of entities requiring oversight. Although exact numbers are not available, EPA estimates that the number of regulated MS4s is about 7,000, including 1,000 Phase I municipalities and 6,000 from Phase II. The number of industrial permittees is thought to be around 100,000. Each year, the construction permit covers around 200,000 permittees each for both Phase I (five acres or greater) and Phase II (one to five acres) projects. Thus, the total number of permittees under the stormwater program at any time numbers greater than half a million. There are fewer than 100,000 non-stormwater (meaning wastewater) permittees covered by the NPDES program, such that stormwater permittees account for approximately 80 percent of NPDES-regulated entities. To manage this large number of permittees, the stormwater program relies heavily on the use of general permits to control industrial, construction, and Phase II MS4 discharges, which are usually statewide, onesize-fits-all permits in which general provisions are stipulated.

An example of the burden felt by a single state is provided by Michigan (David Drullinger, Michigan Department of Environmental Quality Water Bureau, personal communication, September 2007). The Phase I Stormwater regulations that became effective in 1990 regulate 3,400 industrial sites, 765 construction sites per year, and five large cities in Michigan. The Phase II regulations, effective since 1999, have extended the requirements to 7,000 construction sites per year and 550 new jurisdictions, which are comprised of about 350 "primary jurisdictions" (cities, villages, and townships) and 200 "nested jurisdictions" (county drains, road agencies, and public schools). Often, only a handful of state employees are allocated to administer the entire program (see the survey in Appendix C).

In order to comply with the CWA regulations, permittees must fulfill a number of requirements, including the creation and implementation of a stormwater pollution prevention plan, and in some cases, monitoring of stormwater discharges. Stormwater pollution prevention plans document the stormwater control measures (SCMs; sometimes known as best management practices or BMPs) that will be used to prevent or slow stormwater from quickly reaching nearby waterbodies and degrading their quality. These include structural methods such as detention ponds and nonstructural methods such as designing new development to reduce the percentage of impervious surfaces. Unfortunately, data on the degree of pollutant reduction that can be assigned to a particular SCM are only now becoming available (see Chapter 5).

Other sources of variability in EPA's stormwater program are that (1) there are three permit types (municipal, industrial, and construction), (2) some states and local governments have assumed primacy for the program from EPA while others have not, and state effluent limits or benchmarks for stormwater discharges may differ from the federal requirements, and (3) whether there are monitoring requirements varies depending on the regulating entity and the type of activity. For industrial stormwater there are 29 sectors of industrial activity covered by the general permit, each of which is characterized by a different suite of possible contaminants and SCMs.

Because of the industry-, site-, and community-specific nature of stormwater pollution prevention plans, and because of the lack of resources of most NPDES permitting authorities to review these plans and conduct regular compliance inspections, water quality-related accountability in the stormwater program is poor. Monitoring data are minimal for most permittees, despite the fact that they are often the only indicators of whether an adequate stormwater program is being implemented. At the present time, available monitoring data indicate that many industrial facilities routinely exceed "benchmark values" established by EPA or the states, although it is not clear whether these exceedances provide useful indicators of stormwater pollution prevention plan inadequacies or potential water quality problems. These uncertainties have led to mounting and contradictory pressure from permittees to eliminate monitoring requirements entirely as well as from those hoping for greater monitoring requirements to better understand the true nature of stormwater discharges and their impact.

To improve the accountability of it Stormwater Program, EPA requested advice on stormwater issues from the National Research Council's (NRC's) Water Science and Technology Board as the next round of general permits is being prepared. Although the drivers for this study have been in the industrial stormwater arena, this study considered all entities regulated under the NPDES program (municipal, industrial, and construction). The following statement of task guided the work of the committee:

(1) Clarify the mechanisms by which pollutants in stormwater discharges affect ambient water quality criteria and define the elements of a "protocol" to link pollutants in stormwater discharges to ambient water quality criteria.

(2) Consider how useful monitoring is for both determining the potential of a discharge to contribute to a water quality standards violation and for determining the adequacy of stormwater pollution prevention plans. What specific parameters should be monitored and when and where? What effluent limits and benchmarks are needed to ensure that the discharge does not cause or contribute to a water quality standards violation?

(3) Assess and evaluate the relationship between different levels of stormwater pollution prevention plan implementation and in-stream water quality, considering a broad suite of SCMs.

(4) Make recommendations for how to best stipulate provisions in stormwater permits to ensure that discharges will not cause or contribute to exceedances of water quality standards. This should be done in the context of general permits. As a part of this task, the committee will consider currently available information on permit and program compliance.

(5) Assess the design of the stormwater permitting program implemented under the CWA.

The report is intended to inform decision makers within EPA, affected industries, public stormwater utilities, other government agencies and the private sector about potential options for managing stormwater.

EPA requested that the study be limited to those issues that fall under the agency's current regulatory scheme for stormwater, which excludes nonpoint sources of pollution such as agricultural runoff and septic systems. Thus, these sources are not extensively covered in this report. The reader is referred to NRC (2000, 2005) for more detailed information on the contribution of agricultural runoff and septic systems to waterbody impairment and on innovative technologies for treating these sources. Also at the request of EPA, concentrated animal feeding operations and combined sewer overflows were not a primary focus. However, the committee felt that in order to be most useful it should opine on certain critical effects of regulated stormwater beyond the delivery of traditional pollutants. Thus, changes in stream flow, streambank erosion, and habitat alterations caused by stormwater are considered, despite the relative inattention given to them in current regulations.

Chapter 2 presents the regulatory history of stormwater control in the United States, focusing on relevant portions of the CWA and the regulations that have been created to implement the Act. Federal, state, and local programs for or affecting stormwater management are described and critiqued. Chapter 3 deals with the first item in the statement of task. It reviews the scientific aspects of stormwater, including sources of pollutants in stormwater, how stormwater moves across the land surface, and its impacts on receiving waters. It reflects the best of currently available science, and addresses biological endpoints that go far beyond ambient water quality criteria. Methods for monitoring and modeling stormwater (the subject of the second item in the statement of task) are described in Chapter 4. The material evaluates the usefulness of current benchmark and MS4 monitoring requirements, and suggestions for improvement are made. The latter half of the chapter considers the multitude of models available for linking stormwater discharges to ambient water quality. This analysis makes it clear that stormwater pollution cannot yet be treated as a deterministic system (in which the contribution of individual dischargers to a waterbody impairment can be identified) without significantly greater investment in model development. Addressing primarily the third item in the statement of task, Chapter 5 considers the vast suite of both structural and nonstructural measures designed to control stormwater and reduce its pollutant loading to waterbodies. It also takes on relevant larger-scale concepts, such as the benefit of stormwater management within a watershed framework. In Chapter 6, the limitations and possibilities associated with a new

regulatory approach are explored, as are those of an enhanced but more traditional scheme. Numerous suggestions for improving the stormwater permitting process for municipalities, industrial sites, and construction are made. Along with Chapter 2, this chapter addresses the final two items in the committee's statement of task.

REFERENCES

- Alberti, M., D. B. Booth, K. Hill, B. Coburn, C. Avolio, S. Coe, and D. Spirandelli. 2006. The impact of urban patterns on aquatic ecosystems: An empirical analysis in Puget lowland sub-basins. Landscape Urban Planning, doi:10.1016/j.landurbplan.2006.08.001.
- Allan, J. D. 2004. Landscapes and riverscapes: The influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics 35:257–284.
- Alley, W. A., and J. E. Veenhuis. 1983. Effective impervious area in urban runoff modeling. Journal of Hydrological Engineering, ASCE 109(2):313–319.

Anderson, B.C., W. E. Watt, and J. Marsalek. 2002. Critical issues for stormwater ponds: Learning from a decade of research. Water Science and Technology 45(9):277–283.

Barbour, M. T., M. J. Paul, D. W. Bressler, A. H. Purcell, V. H. Resh, and E. T. Rankin. 2006. Bioassessment: A tool for managing aquatic life uses for urban streams. Water Environment Research Foundation Research Digest 01-WSM-3.

Bay, S., B. H. Jones, K. Schiff, and L. Washburn. 2003. Water quality impacts of stormwater discharges to Santa Monica Bay. Marine Environmental Research 56:205–223.

Bledsoe, B. P., and C. C. Watson. 2001. Effects of urbanization on channel instability. Journal of the American Water Resources Association 37(2):255–270.

Bloom, M. F. 2006. Low Impact Development approach slows down drainage, reduces pollution. Water and Wastewater International 21(4):59.

Booth, D. B. 1990. Stream channel incision in response following drainage basin urbanization. Water Resources Bulletin 26:407–417.

Booth, D. B. 2005. Challenges and prospects for restoring urban streams: A perspective from the Pacific Northwest of North America. Journal of the North American Benthological Society 24(3):724– 737.

Booth, D. B., and C. R. Jackson. 1997. Urbanization of aquatic systems—degradation thresholds, stormwater detention, and the limits of mitigation. Water Resources Bulletin 33:1077–1090.

Booth, D. B., and P. C. Henshaw. 2001. Rates of channel erosion in small urban streams. Pp. 17–38 In Land Use and Watersheds: Human Influence on Hydrology and Geomorphology in Urban and Forest Areas, M. Wigmosta and S. Burges, eds. AGU Monograph Series, Water Science and Application, Volume 2.

Boulton, A. J. 1999. An overview of river health assessment: Philosophies, practice, problems and prognosis. Freshwater Biology 41(2):469–479.

Brookings Institute. 2004. Toward a new metropolis: The opportunity to rebuild America. Arthur C. Nelson, Virginia Polytechnic Institute and State University. Discussion paper prepared for The Brookings Institution Metropolitan Policy Program.

Burges, S. J., M. S. Wigmosta, and J. M. Meena. 1998. Hydrological effects of land-use change in a zeroorder catchment. Journal of Hydrological Engineering 3:86–97.

Calderon, R., E. Mood, and A. Dufour. 1991. Health effects of swimmers and nonpoint sources of contaminated water. International Journal of Environmental Health Research 1:21–31.

Cassin, J., R. Fuerstenberg, F. Kristanovich, L. Tear, and K. Whiting. 2004. Application of normative flow on small streams in Washington State—hydrologic perspective. Pp. 4281–4299 in Proceedings of the 2004 World Water and Environmental Resources Congress: Critical Transitions in Water and Environmental Resources Management.

Introduction

- Center for Watershed Protection (CWP). 2005. An Integrated Framework to Restore Small Urban Watersheds. Ellicott City, MD, 116 pp. Available at http://www.cwp.org/Store/usrm.htm. Last accessed September 23, 2008.
- Chang, H. 2007. Comparative streamflow characteristics in urbanizing basins in the Portland Metropolitan Area, Oregon, USA. Hydrological Processes 21(2):211–222.
- Chang, H., and T. N. Carlson. 2005. Water quality during winter storm events in Spring Creek, Pennsylvania USA. Hydrobiologia 544(1):321–332.
- Chang, H. H. 1992. Fluvial Processes in River Engineering. Malabar, FL: Krieger Publishing, 432 pp.
- Colford, J. M., Jr, T. J. Wade, K. C. Schiff, C. C. Wright, J. F. Griffith, S. K. Sandhu, S. Burns, J. Hayes, M. Sobsey, G. Lovelace, and S. Weisberg. 2007. Water quality indicators and the risk of illness at non-point source beaches in Mission Bay, California. Epidemiology (1):27–35.
- Crockett, C. 2007. The regulated perspective of stormwater management. Presentation to the NRC Committee on Stormwater Discharge Contributions to Water Pollution, Washington, DC, January 22, 2007.
- Dahl, T. 2006. Status and trends of wetlands in the conterminous United States: 1998–2004. Washington, DC: U.S. Department of the Interior Fish and Wildlife Service.
- Davies, S. P., and S. K. Jackson. 2006. The biological condition gradient: A descriptive model for interpreting change in aquatic ecosystems. Ecological Applications 16(4):1251–1266.
- Dinius, S. H. 1987. Design of an index of water quality. Water Resources Bulletin 23(5):833-843.

Duke, L. D., K. P. Coleman, and B. Masek. 1999. Widespread failure to comply with U.S. storm water regulations for industry—Part I: Publicly available data to estimate number of potentially regulated facilities. Environmental Engineering Science 16(4):229–247.

Dunne, T., and L. B. Leopold. 1978. Water in Environmental Planning. New York: W. H. Freeman.

Dwight, R. H., D. B. Baker, J. C. Semenza, and B. H. Olson. 2004. Health effects associated with recreational coastal water use: Urban vs. rural California. American Journal of Public Health 94(4):565–567.

- EPA (U.S. Environmental Protection Agency). 1992. Storm Water Management for Industrial Activities, Developing Pollution Prevention Plans and Best Management Practices. Available at http://www.ntis.gov.
- EPA. 1998. EPA Project Beach. Washington, DC: EPA Office of Water.
- EPA. 2000. National Water Quality Inventory. 305(b) List. Washington, DC: EPA Office of Water.
- EPA. 2002. 2000 National Water Quality Inventory. EPA-841-R-02-001. Washington, DC: EPA Office of Water.
- EPA. 2006. Wadeable Streams Assessment: A Collaborative Survey of the Nation's Streams. EPA 841-B-06-002. Washington, DC: EPA Office of Water.
- EPA. 2007. National Estuary Program Coastal Condition Report. EPA-842-B-06-001. Washington, DC: EPA Office of Water and Office of Research and Development.
- FEMA (Federal Emergency Management Agency). No date. Flood. A report of the Subcommittee on Disaster Reduction. Available at http://www.sdr.gov. Last accessed September 23, 3008.
- Field, R., and R. E. Pitt. 1990. Urban storm-induced discharge impacts: U.S. Environmental Protection Agency research program review. Water Science and Technology 22(10–11):1–7.
- Gergel, S. E., M. G. Turner, J. R. Miller, J. M. Melack, and E. H. Stanley. 2002. Landscape indicators of human impacts to riverine systems. Aquatic Sciences 64(2):118–128.
- Gregory, M., J. Aldrich, A. Holtshouse, and K. Dreyfuss-Wells. 2005. Evaluation of imperviousness impacts in large, developing watersheds. Pp. 115–150 in Efficient Modeling for Urban Water Systems, Monograph 14, W. James, E. A. McBean, R. E. Pitt, and S. J. Wright, eds. Guelph, Ontario, Canada: CHI.
- Grübler, A. 1994. Technology. Pp. 287–328 in Changes in Land Use and Land Cover: A Global Perspective, W. B. Meyer and B. L. Turner II, eds. Cambridge: Cambridge University Press.
- Hamilton, P. A., T. L. Miller, and D. N. Myers. 2004. Water Quality in the Nation's Streams and Aquifers—Overview of Selected Findings, 1991–2001. U.S. Geological Survey Circular 1265, 20

pp. Available at http://pubs.usgs.gov/circ/2004/1265/pdf/circular1265.pdf. Last accessed September 23, 2008.

- Hammer, T. R. 1972. Stream and channel enlargement due to urbanization. Water Resources Research 8:1530–1540.
- Hart, J. F. 1968. Loss and abandonment of cleared farm land in the Eastern United States. Annals of the Association of American Geographers 58(5):417–440.
- Heinz Center. 2002. The State of the Nation's Ecosystems. Measuring the Lands, Waters, and Living Resources of the United States. Cambridge University Press.
- Hollis, G. E. 1975. The effect of urbanization on floods of different recurrence interval. Water Resources Research 11:431-435.
- Hollis, G. E., and J. K. Luckett. 1976. The response of natural river channels to urbanization: Two case studies from southeast England. Journal of Hydrology 30:351–363.
- Holman-Dodds, J. K., A. A. Bradley, and K. W. Potter. 2003. Evaluation of hydrologic benefits of infiltration based urban storm water management. Journal of the American Water Resources Association 39(1):205–215.
- Horner, R. R., D. B. Booth, A. A. Azous, and C. W. May. 1997. Watershed determinants of ecosystem functioning. Pp. 251-274 in Effects of Watershed Development and Management on Aquatic Ecosystems, L. A. Roesner, ed. Proceedings of the Engineering Foundation Conference, Snowbird, UT, August 4–9, 1996.
- House, M. A., J. B. Ellis, E. E. Herricks, T. Hvitved-Jacobsen, J. Seager, L. Lijklema, H. Aalderink, and I. T. Clifforde. 1993. Urban drainage: Impacts on receiving water quality. Water Science and Technology 27(12):117–158.
- Karr, J. R. 1991. Biological integrity: A long-neglected aspect of water resource management. Ecological Applications 1:66–84.
- Karr, J. R., and C. O. Yoder. 2004. Biological assessment and criteria improve TMDL planning and decision making. Journal of Environmental Engineering 130:594–604.

Klein, R. D. 1979. Urbanization and stream quality impairment. Water Resources Bulletin 15:948-969.

Kloss, C., and C. Calarusse. 2006. Rooftops to rivers—green strategies for controlling stormwater and combined sewer overflows. New York: National Resources Defense Council. Available at http://www.nrdc.org/water/pollution/rooftops/rooftops.pdf. Last accessed September 23, 2008.

- Konrad, C. P., and S. J. Burges. 2001. Hydrologic mitigation using on-site residential storm-water detention. Journal of Water Resources Planning and Management 127:99–107.
- Konrad, C. P., D. B. Booth, and S. J. Burges. 2005. Effects of urban development in the Puget Lowland, Washington, on interannual streamflow patterns: Consequences for channel form and streambed disturbance. Water Resources Research 41(7):1–15.
- Laenen, A. 1983. Storm runoff as related to urbanization based on data collected in Salem and Portland, and generalized for the Willamette Valley, Oregon. U.S. Geological Survey Water-Resources Investigations Report 83-4238, 9 pp.
- Lambin, E. F., B. L. Turner, H. J. Geist, S. B. Agbola, A. Angelsen, J. W. Bruce, O. T. Coomes, R. Dirzo, G. Fischer, C. Folke, P. S. George, K. Homewood, J. Imbernon, R. Leemans, X. Li, E. F. Moran, M. Mortimore, P. S. Ramakrishnan, J. F. Richards, H. Skanes, W. Steffen, G. D. Stone, U. Svedin, T. A. Veldkamp, C. Vogel, and J. Xu. 2001. The causes of land-use and land-cover change: Moving beyond the myths. Global Environmental Change 11(4):261–269.
- LeBlanc, R. T., R. D. Brown, and J. E. FitzGibbon. 1997. Modeling the effects of land use change on the water temperature in unregulated urban streams. Journal of Environmental Management 49(4):445–469.
- Leopold, L. B. 1968. Hydrology for urban land planning: A guidebook on the hydrologic effects of urban land use. U.S. Geological Survey Circular 554. Washington, DC: USGS.
- Levin, P. S., R. W. Zabel, and J. G. Williams. 2001. The road to extinction is paved with good intentions: Negative association of fish hatcheries with threatened salmon. Proceedings of the Royal Society—Biological Sciences (Series B) 268(1472):1153–1158.

- Lieb, D. A., and R. F. Carline. 2000. Effects of urban runoff from a detention pond on water quality, temperature and caged gammarus minus (say) (amphipoda) in a headwater stream. Hydrobiologia 441:107–116.
- Loveland, T., and R. Auch. 2004. The changing landscape of the eastern United States. Washington, DC: U.S. Geological Survey. Available at http://www.usgs.gov/125/articles/eastern_us.html (accessed November 25, 2007).
- Maxted, J. R., and E. Shaver. 1997. The use of retention basins to mitigate stormwater impacts on aquatic life. Pp. 494-512 In: Effects of Watershed Development and Management on Aquatic Ecosystems. L. A. Roesner (Ed.). New York: American Society of Civil Engineers.
- Maxted, J. R., and E. Shaver. 1999. The use of detention basins to mitigate stormwater impacts to aquatic life. Pp. 6–15 in National Conference on Retrofit Opportunities for Water Resource Protection in Urban Environments, Chicago, February 9–12, 1998. EPA Office of Research and Development, EPA/625/R-99/002.
- May, C. W., and R. R. Horner. 2002. The limitations of mitigation-based stormwater management in the pacific northwest and the potential of a conservation strategy based on low-impact development principles. Global Solutions for Urban Drainage, pp. 1-16.
- Meyer, J. L., M. J. Paul, and W. K. Taulbee. 2005. Stream ecosystem function in urbanizing landscapes. Journal of the North American Benthological Society 24:602–612.
- Miltner, R. J., White, D., and C. O. Yoder. 2004. The biotic integrity of streams in urban and suburbanizing landscapes. Landscape and Urban Planning 69:87–100.
- Morisawa, M., and E. LaFlure. 1982. Hydraulic geometry, stream equilibrium and urbanization. Pp. 333– 350 in Adjustments of the Fluvial System, D. D. Rhodes and G. P. Williams, eds. London: Allen and Unwin.
- Moscrip, A. L., and D. R. Montgomery. 1997. Urbanization, flood frequency, and salmon abundance in Puget Lowland streams. Journal of the American Water Resources Association 33:1289–1297.
- Naiman, R. J., and M. G. Turner. 2000. A future perspective on North America's freshwater ecosystems. Ecological Applications 10(4):958–970.
- Neller, R. J. 1988. A comparison of channel erosion in small urban and rural catchments, Armidale, New South Wales. Earth Surface Processes and Landforms 13:1–7.
- Nelson, E. J., and D. B. Booth. 2002. Sediment budget of a mixed-land use, urbanizing watershed. Journal of Hydrology 264:51-68.
- Nehrke, S. M., and L. A. Roesner. 2004. Effects of design practice for flood control and best management practices on the flow-frequency curve. Journal of Water Resources Planning and Management 130(2):131-139.
- NOAA (National Oceanic and Atmospheric Administration). 1992. 1990 Shellfish Register of Classified Estuarine Waters. Data supplement. Rockville, MD: National Ocean Service.
- NRC (National Research Council). 2000. Watershed Management for Potable Water Supply: Assessing the New York City Strategy. Washington, DC: National Academies Press.
- NRC. 2005. Regional Cooperation for Water Quality Improvement in Southwestern Pennsylvania. Washington, DC: National Academies Press.
- NRDC (Natural Resources Defense Council). 2007. Testing the Waters: A Guide to Water Quality at Vacation Beaches (17th ed.). New York: NRDC.
- Palmer, M. A., and J. D. Allan. 2006. Restoring Rivers. Issues in Science & Technology. Washington, DC: National Academies Press.
- Paul, M. J., and J. L. Meyer. 2001. Streams in the urban landscape. Annual Review of Ecology and Systematics 32:333–365.
- Poff, N. L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks, and J. C. Stromberg. 1997. The natural flow regime: A paradigm for river conservation and restoration. BioScience 47(11):769–784.

- Poff, N. L., B. P. Bledsoe, and C. O. Cuhaciyan. 2006. Hydrologic variation with land use across the contiguous United States: Geomorphic and ecological consequences for stream ecosystems. Geomorphology 79 (3-4):264-285.
- Pozzi, F., and C. Small. 2005. Analysis of urban land cover and population density in the United States. Photogrammetric Engineering and Remote Sensing 71(6):719-726.
- Prysch, E. A., and J. C. Ebbert. 1986. Quantity and quality of storm runoff from three urban catchments in Bellevue, Washington. USGS Water-Resources Investigations Report 86-4000, 85 pp.
- Puget Sound Action Team. 2005. Low Impact Development: Technical Guidance Manual for Puget Sound. Available at http://www.psat.wa.gov/Programs/LID.htm. Last accessed September 23, 2008.
- Raskin, L., A. DePaoli, and M. J. Singer. 2005. Erosion control materials used on construction sites in California. Journal of Soil and Water Conservation 60(4):187–192.
- Roesner, L. A., B. P. Bledsoe, and R. W. Brashear. 2001. Are best-management-practice criteria really environmentally friendly? Journal of Water Resources Planning and Management 127(3):150-154.
- Roy, A. H., M. C. Freeman, B. J. Freeman, S. J. Wenger, W. E. Ensign, and J. L. Meyer. 2005. Investigating hydrological alteration as a mechanism of fish assemblage shifts in urbanizing streams. Journal of the North American Benthological Society 24:656–678.
- Schueler, T. 1987. Controlling Urban Runoff: A Practical Manual for Planning and Designing Urban Best Management Practices. Washington, DC: Metropolitan Washington Council of Governments.
- Simon, A. 1989. A model of channel response in disturbed alluvial channels. Earth Surface Processes and Landforms 14:11–26.
- Steedman, R. J. 1988. Modification and assessment of an index of biotic integrity to quantify stream quality in Southern Ontario. Canadian Journal of Fisheries and Aquatic Sciences 45:492–501.
- Strecker, E. W., M. M. Quigley, B. Urbonas, and J. Jones. 2004. Analyses of the expanded EPA/ASCE International BMP Database and potential implications for BMP design. In Proceedings of the World Water and Environmental Congress 2004, June 27–July 1, 2004, Salt Lake City, UT. G. Sehlke, D. F. Hayes, and D. K. Stevens (eds.). Reston, VA: ASCE.
- Sutherland, R. 1995. Methods for Estimating the Effective Impervious Area of Urban Watersheds. Watershed Protection Techniques 2(1):282-284. Center for Watershed Protection.
- Thomson, J. D., G. Weiblen, B. A. Thomson, S. Alfaro, and P. Legendre. 1986. Untangling multiple factors in spatial distributions: lilies, gophers, and rocks. Ecology 77:1698–1715.
- Trimble, S. W. 1997. Contribution of stream channel erosion to sediment yield from an urbanizing watershed. Science 278:1442–1444.
- Trout Unlimited. 2006. Eastern Brook Trout: Status and Threats. Eastern Brook Trout Joint Venture. Arlington, VA: Trout Unlimited.
- USGS (U.S. Geological Survey). 2006. The Quality of our Nation's Waters: Pesticides in the Nation's Streams and Ground Water: 1992–2001. National Water Quality Assessment Program. USGS Circular 1291. Reston, VA: USGS.
- van Roon, M. 2007. Water localisation and reclamation: Steps towards low impact urban design and development. Journal of Environmental Management 83(4):437–447.
- Vitousek, P. M., H. A. Mooney, J. Lubchenco, and J. M. Melillo. 1997. Human domination of Earth's ecosystems. Science 277(5325):494–499.
- Walsh, C. J., T. D. Fletcher, and A. R. Ladson. 2005a. Stream restoration in urban catchments through redesigning stormwater systems: Looking to the catchment to save the stream. Journal of the North American Benthological Society 24:690–705.
- Walsh, C. J., A. H. Roy, J. W. Feminella, P. D. Cottingham, P. M. Groffman, and R. P. Morgan. 2005b. The urban stream syndrome: Current knowledge and the search for a cure. Journal of the North American Benthological Society 24(3):706–723.
- Wang, L., J. Lyons, P. Kanehl, and R. Gatti. 1997. Influences of watershed land use on habitat quality and biotic integrity in Wisconsin streams. Fisheries 22(6):6–12.

Introduction

- Wang, L., J. Lyons, P. Kanehl, and R. Bannerman. 2001. Impacts of urbanization on stream habitat and fish across multiple spatial scales. Environmental Management 28(2):255–266.
- Wang, L., J. Lyons, and P. Kanehl. 2003. Impacts of urban land cover on trout streams in Wisconsin and Minnesota. Transactions of the American Fisheries Society 132(5):825-839.
- White, R. J. 1996. Growth and development of North American stream habitat management for fish. Canadian Journal of Fisheries and Aquatic Sciences 53(Suppl 1):342–363.
- Whitlow, J. R., and K. J. Gregory. 1989. Changes in urban stream channels in Zimbabwe. Regulated Rivers: Research and Management 4:27–42.
- Williams, G. P., and M. G. Wolman. 1984. Downstream Effects of Dams on Alluvial Rivers. U.S. Geological Survey Professional Paper 1286.
- Wolman, M. G., and Schick, A. 1967. Effects of construction on fluvial sediment, urban and suburban areas of Maryland. Water Resources Research 3:451–464.
- Wright, T., J. Tomlinson, T. Schueler, and K. Cappiella. 2006. Direct and indirect impacts of urbanization on wetland quality. Wetlands and Watersheds Article 1. Ellicott City, MD: Center for Watershed Protection.

Chapter 2 The Challenge of Regulating Stormwater

Although stormwater has long been regarded as a major culprit in urban flooding, only in the past 30 years have policymakers appreciated the significant role stormwater plays in the impairment of urban watersheds. This recent rise to fame has led to a cacophony of federal, state, and local regulations to deal with stormwater, including the federal Clean Water Act (CWA) implemented by the U.S. Environmental Protection Agency (EPA). Perhaps because this longstanding environmental problem is being addressed so late in the development and management of urban watersheds, the laws that mandate better stormwater control are generally incomplete and were often passed for other purposes, like industrial waste control.

This chapter discusses the regulatory programs that govern stormwater, particularly the federal program, explaining how these programs manage stormwater only impartially and often inadequately. While progress has been made in the regulation of urban stormwater—from the initial emphasis on simply moving it away from structures and cities as fast as possible to its role in degrading neighboring waterbodies—a significant number of gaps remain in the existing system. Chapter 6 returns to these gaps and considers the ways that at least some of them may be addressed.

FEDERAL REGULATORY FRAMEWORK FOR STORMWATER

The Clean Water Act

The CWA is a comprehensive piece of U.S. legislation that has a goal of restoring and maintaining the chemical, physical, and biological integrity of the nation's waters. Its long-term goal is the elimination of polluted discharges to surface waters (originally by 1985), although much of its current effort focuses on the interim goal of attaining swimmable and fishable waters. Initially enacted as the Federal Water Pollution Control Act in 1948, it was revised by amendments in 1972 that gave it a stronger regulatory, water chemistry-focused basis to deal with acute industrial and municipal effluents that existed in the 1970s. Amendments in 1987 broadened its focus to deal with more diffuse sources of impairments, including stormwater. Improved monitoring over the past two decades has documented that although discharges have not been eliminated, there has been a widespread lessening of the effects of direct municipal and industrial wastewater discharges.

A timeline of federal regulatory events over the past 125 years relevant to stormwater, which includes regulatory precursors to the 1972 CWA, is shown in Table 2-1. The table reveals that while there was a flourish of regulatory activity related to stormwater during the mid-1980s to 1990s, there has been much less regulatory activity since that time.

TABLE 2-1 Legal and Regulatory Milestones for the Stormwater Program

1886	Rivers and Harbors Act. A navigation-oriented statute that was used in the 1960s and 1970s to challenge unpermitted pollutant discharges from industry.
1948 1952 1955	Federal Water Pollution Control Act. Provided matching funds for wastewater treatment facilities, grants for state water pollution control programs, and limited federal authority to act against interstate pollution.
1965	Water Quality Act. Required states to adopt water quality standards for interstate waters subject to federal approval. It also required states to adopt state implementation plans, although failure to do so would not result in a federally implemented plan. As a result, enforceable requirements against polluting industries, even in interstate waters, was limited.
1972	Federal Water Pollution Control Act. First rigorous national law prohibiting the discharge of pollutants into surface waters without a permit.
	• Goal is to restore and maintain health of U.S. waters
	• Protection of aquatic life and human contact recreation by 1983
	• Eliminate discharge of pollutants by 1985
	Wastewater treatment plant financing
	Clean Water Act Section 303(d)
	 Contains a water quality-based strategy for waters that remain polluted after the implementation of technology-based standards.
	• Requires states to identify waters that remain polluted, to determine the total maximum daily loads that would reverse the impairments, and then to allocate loads to sources. If states do not perform these actions, EPA must.
	Clean Water Act Section 208
	• Designated and funded the development of regional water quality management plans to assess regional water quality, propose stream standards, identify water quality problem areas, and identify wastewater treatment plan long-term needs. These plans also include policy statements which provide a common consistent basis for decision making.
1977	Clean Water Act Sections 301 and 402
1981	Control release of toxic pollutants to U.S. waters
	• Technology treatment standards for conventional pollutants and priority toxic pollutants.
	Recognition of technology limitations for some processes.
1977	<i>NRDC vs. Costle.</i> Required EPA to include stormwater discharges in the National Pollution Discharge Elimination System (NPDES) program.
1987	Clean Water Act Amended Sections 301 and 402
•	• Control toxic pollutants discharged to U.S. waters.
	Manage urban stormwater pollution.
	• Numerical criteria for all toxic pollutants.
	Integrated control strategies for impaired waters.
	• Stormwater permit programs for urban areas and industry.
	Stronger enforcement penalties.
	Anti-backsliding provisions.

1990	EPA's Phase I Stormwater Permit Rules are Promulgated	
	Application and permit requirements for large and medium municipalities	
	 Application and permit requirements for light and heavy industrial facilities based on Standard Industrial Classification (SIC) Codes, and construction activity ≥ 5 acres 	
1999	EPA's Phase II Stormwater Permit Rules are Promulgated	
	Permit requirements for census-defined urbanized areas	
	Permit requirements for construction sites 1 to 5 acres	
1997-	Total Maximum Daily Load (TMDL) Program Litigation	
2001	• Courts order EPA to establish TMDLs in a number of states if the states fail to do so. The TMDLs assign Waste Load Allocations for stormwater discharges which must be incorporated as effluent limitations in stormwater permits.	
2006- 2008	Section 323 of the Energy Policy Act of 2005	
	• EPA promulgates rule (2006) to exempt stormwater discharges from oil and gas exploration, production, processing, treatment operations, or transmission facilities from NPDES stormwater permit program.	
	• In 2008, courts order EPA to reverse the rule which exempted certain activities in the oil and gas exploration industry from storm water regulations. In <i>Natural Resources Defense Council vs. EPA</i> (9 th Cir. 2008), the court held that it was "arbitrary and capricious" to exempt from the Clean Water Act stormwater discharges containing sediment contamination that contribute to a violation of water quality standards.	
2007	Energy Independence and Security Act of 2007	
	• Requires all federal development and redevelopment projects with a footprint above 5,000 square feet to achieve predevelopment hydrology to the "maximum extent technically feasible."	

The Basic NPDES Program: Regulating Pollutant Discharges

The centerpiece of the CWA is its mandate "that all *discharges* into the nation's waters are unlawful, unless specifically authorized by a permit" [42 U.S.C. §1342(a)]. Discharges do not include all types of pollutant flows, however. Instead, "discharges" are defined more narrowly as "point sources" of pollution, which in turn include only sources that flow through a discrete conveyance, like a pipe or ditch, into a lake or stream [33 U.S.C. §§ 1362(12) and (14)]. Much of the focus of the CWA program, then, is on limiting pollutants emanating from these discrete, point sources directly into waters of the United States. Authority to control nonpoint sources of pollution, like agricultural runoff (even when drained via pipes or ditches), is generally left to the states with more limited federal oversight and direction.

All point sources of pollutants are required to obtain a National Pollutant Discharge Elimination System (NPDES) permit and ensure that their pollutant discharges do not exceed specified effluent standards. Congress also commanded that rather than tie effluent standards to the needs of the receiving waterbody—an exercise that was far too scientifically uncertain and time-consuming—the effluent standards should first be based on the best available pollution technology or the equivalent. In response to a very ambitious mandate, EPA has promulgated very specific, quantitative discharge limits for the wastewater produced by over 30 industrial categories of sources based on what the best pollution control technology could accomplish, and

it requires at least secondary treatment for the effluent produced by most sewage treatment plants. Under the terms of their permits, these large sources are also required to self-monitor their effluent at regular intervals and submit compliance reports to state or federal regulators.

EPA quickly realized after passage of the CWA in 1972 that if it were required to develop pollution limits for all point sources, it would need to regulate hundreds of thousands and perhaps even millions of small stormwater ditches and thousands of small municipal stormwater outfalls, all of which met the technical definition of "point source". It attempted to exempt all these sources, only to have the D.C. Circuit Court read the CWA to permit no exemptions [*NRDC vs. Costle*, 568 F.2d 1369 (D.C. Cir. 1977)]. In response, EPA developed a "general" permit system (an "umbrella" permit that covers multiple permittees) for smaller outfalls of municipal stormwater and similar sources, but it generally did not require these sources to meet effluent limitations or monitor their effluent.

It should be noted that, while the purpose of the CWA is to ensure protection of the physical, biological, and chemical integrity of the nation's waters, the enforceable reach of the Act extends only to the discharges of "pollutants" into waters of the United States [33 U.S.C. § 1311(a); cf. PUD No. 1 of Jefferson County v. Washington Department of Ecology, 511 U.S. 700 (1994) (providing states with broad authority under section 401 of the CWA to protect designated uses, not simply limit the discharge of pollutants)]. Even though "pollutant" is defined broadly in the Act to include virtually every imaginable substance added to surface waters, including heat, it has not traditionally been read to include water volume [33 U.S.C. § 1362(6)]. Thus, the focus of the CWA with respect to its application to stormwater has traditionally been on the water quality of stormwater and not on its quantity, timing, or other hydrologic properties. Nonetheless, because the statutory definition of "pollutant" includes "industrial, municipal, and agricultural waste discharged into water," using transient and substantial increases in flow in urban watersheds as a proxy for pollutant loading seems a reasonable interpretation of the statute. EPA Regions 1 and 3 have considered flow control as a particularly effective way to track sediment loading, and they have used flow in TMDLs as a surrogate for pollutant loading (EPA Region 3, 2003). State trial courts have thus far ruled that municipal separate storm sewer system (MS4) permits issued under delegated federal authority can impose restrictions on flow where changes in flow impair the beneficial uses of surface waters (Beckman, 2007). EPA should consider more formally clarifying that significant, transient increases in flow in urban watersheds serve as a legally valid proxy for the loading of pollutants. This clarification will allow regulators to address the problems of stormwater in more diverse ways that include attention to water volume as well as to the concentration of individual pollutants.

Stormwater Discharge Program

By 1987, Congress became concerned about the significant role that stormwater played in contributing to water pollution, and it commanded EPA to regulate a number of enumerated stormwater discharges more rigorously. Specifically, Section 402(p), introduced in the 1987 Amendments to the CWA, directs EPA to regulate some of the largest stormwater discharges— those that occur at industrial facilities and municipal storm sewers from larger cities and other significant sources (like large construction sites)—by requiring permits and promulgating discharge standards that require the equivalent of the best available technology [42 U.S.C. §

PREPUBLICATION

EPA-BAFB-00001263

1342(p)(3)]. Effectively, then, Congress grafted larger stormwater discharges onto the existing NPDES program that was governing discharges from manufacturing and sewage treatment plants.

Upon passage of Section 402(p), EPA divided the promulgation of its stormwater program into two phases that encompass increasingly smaller discharges. The first phase, finalized in 1990, regulates stormwater discharges from ten types of industrial operations (this includes the entire manufacturing sector), construction occurring on five or more acres, and medium or large storm sewers in areas that serve 100,000 or more people [40 C.F.R. § 122.26(a)(3) (1990); 40 C.F.R. § 122.26 (b)(14) (1990)]. The second phase, finalized in 1995, includes smaller municipal storm sewer systems and smaller construction sites (down to one acre) [60 Fed. Reg. 40,230 (Aug. 7, 1995) (codified at 40 C.F.R. Parts 122, 124 (1995)]. If these covered sources fail to apply for a permit, they are in violation of the CWA.

Because stormwater is more variable and site specific with regard to its quality and quantity than wastewater, EPA found it necessary to diverge in two important ways from the existing NPDES program governing discharges from industries and sewage treatment plants. First, stormwater discharge limits are not federally specified in advance as they are with discharges from manufacturing plants. Even though Congress directed EPA to require stormwater sources to install the equivalent of the best available technology or "best management practices," EPA concluded that the choice of these best management practices (referred to in this report as stormwater control measures or SCMs) would need to be source specific. As a result, although EPA provides constraints on the choices available, it generally leaves stormwater sources with responsibility for developing a stormwater pollution prevention plan and the state with the authority to approve, amend, or reject these plans (EPA, 2006a, p. 15).

Second, because of the great variability in the nature of stormwater flow, some sources are not required to monitor the pollutants in their stormwater discharges. Even when monitoring is required, there is generally a great deal of flexibility for regulated parties to self-monitor as compared with the monitoring requirements applied to industrial waste effluent (not stormwater from industries). More specifically, for a small subset of stormwater sources such as Phase I MS4s, some monitoring of effluent during a select number of storms at a select number of outfalls is required (EPA, 1996a, p. VIII-1). A slightly larger number of identified stormwater dischargers, primarily industrial, are only required to collect grab samples four times during the year and visually sample and report on them (so-called benchmark monitoring). The remaining stormwater sources are not required to monitor their effluent at all (EPA, 1996a). States and localities may still demand more stringent controls and rigorous stormwater monitoring, particularly in areas undergoing a Total Maximum Daily Load (TMDL) assessment, as discussed below. Yet, even for degraded waters subject to TMDLs, any added monitoring that might be required will be limited only to the pollutants that cause the degraded condition [40 C.F.R. §§ 420.32-420.36 (2004)].

Water Quality Management

Since technology-based regulatory requirements imposed on both stormwater and more traditional types of discharges are not tied to the conditions of the receiving water—that is, they require sources only to do their technological best to eliminate pollution—basic federal effluent limits are not always adequate to protect water quality. In response to this gap in protection,

PREPUBLICATION

43

Congress has developed a number of programs to ensure that waters are not degraded below minimal federal and state goals [e.g., 33 U.S.C. §§ 1288, 1313(e), 1329, 1314(l)]. Among these, the TMDL program involves the most rigorous effort to control both point and nonpoint sources to ensure that water quality goals are met [33 U.S.C. § 1313(d)].

Under the TMDL program, states are required to list waterbodies not meeting water quality standards and to determine, for each degraded waterbody, the "total maximum daily load" of the problematic pollutant that can be allowed without violating the applicable water quality standard. The state then determines what types of additional pollutant loading reductions are needed, considering not only point sources but also nonpoint sources. It then promulgates controls on these sources to ensure further reductions to achieve applicable water quality goals.

The TMDL process has four separate components. The first two components are already required of the states through other sections of the CWA: (1) identify beneficial uses for all waters in the state and (2) set water quality standards that correlate with these various uses. The TMDL program adds two components by requiring that states then (3) identify segments where water quality goals have not been met for one or more pollutants and (4) develop a plan that will ensure added reductions are made by point and/or nonpoint sources to meet water quality goals in the future. Each of these is discussed below.

Beneficial Uses. States are required to conduct the equivalent of "zoning" by identifying, for each water segment in the state, a beneficial use, which consists of ensuring that the waters are fit for either recreation, drinking water, aquatic life, or agricultural, industrial, and other purposes [33 U.S.C. § 1313(c)(2)(A)]. All states have derived "narrative definitions" to define the beneficial uses of waterbodies that are components of all water quality standard programs. Many of these narrative criteria are conceptual in nature and tend to define general aspects of the beneficial uses. For categories such as *aquatic life uses*, most states have a single metric for differentiating uses by type of stream (e.g., coldwater vs. warmwater fisheries). In general, the desired biological characteristics of the waterbody are not well defined in the description of the beneficial use. Some states, such as Ohio, have added important details to their beneficial uses by developing tiered aquatic life uses that recognize a strong gradient of anthropogenic background disturbance that controls whether a waterbody can attain a certain water quality and biological functioning (see Box 2-1; Yoder and Rankin, 1998). Any aquatic life use tier less stringent than the CWA interim goal of "swimmable-fishable" requires a Use Attainability Analysis to support a finding that restoration is not currently feasible and recovery is not likely in a reasonable period of time. This analysis and proposed designation must undergo public comment and review and are always considered temporary in nature. More importantly, typically one or more tiers above the operative interim goal of "swimmablefishable" are provided. This method typically will protect the highest attainable uses in a state more effectively than having only single uses.

The concept of tiered beneficial uses and use attainability is especially important with regard to urban stormwater because of the potential irreversibility of anthropogenic development and the substantial costs that might be incurred in attempting to repair degraded urban watersheds to "swimmable–fishable" or higher status. Indeed, it is important to consider what public benefits and costs might occur for different designated uses. For example, large public benefits (in terms of aesthetics and safety) might be gained from initial improvements in an urban stream (e.g., restoring base flow) that achieve modest aquatic use and protect secondary human contact. However, achieving designated uses associated with primary human contact or

BOX 2-1 Ohio's Tiered Aquatic Life Uses

"Designated" or "beneficial" uses for waterbodies are an important aspect of the CWA because they are the explicit water quality goals or endpoints set for each water or class of waters. Ohio was one of the first states to implement tiered aquatic life uses (TALUs) in 1978 as part of its water quality standards (WQS). Most states have a single aquatic life use for a class of waters based on narrative biological criteria (e.g., warmwater or coldwater fisheries) although many states now collect data that would allow identification of multiple tiers of condition. EPA has recognized the management advantages inherent to tiered aquatic life uses and has developed a technical document on how to develop the scientific basis that would allow States to implement tiered uses (EPA, 2005a; Davies and Jackson, 2006).

Ohio's TALUs reflect the mosaic of natural features across Ohio and over 200 years of human changes to the natural landscape. Widespread information on Ohio's natural history (e.g., Trautman's 1957 *Fishes of Ohio*) provided strong evidence that the potential fauna of streams was not uniform, but varied geographically. Based on this knowledge, Ohio developed a more protective aquatic life use tier to protect streams of high biological diversity that harbored unique assemblages of rare or sensitive aquatic species (e.g., fish, mussels, invertebrates). In its WQS in 1978, Ohio established a narrative Exceptional Warmwater Habitat (EWH) aquatic life use to supplement its more widespread general or "Warmwater Habitat" aquatic life use (WWH) (Yoder and Rankin, 1995).

The CWA permits states to assign aquatic life uses that do not meet the baseline swimmablefishable goals of the CWA under specific circumstances after conducting a Use Attainability Analysis (UAA), which documents that higher CWA aquatic life use goals (e.g., WWH and EWH in Ohio) are not feasibly attainable. These alternate aquatic life uses are always considered temporary in case land use changes or technology changes to make restoration feasible. The accrual of more than ten years of biological assessment data by the late 1980s and extensive habitat and stressor data provided a key link between the stressors that limited attainment of a higher aquatic life use in certain areas and reaches of Ohio streams. This assessment formed the basis for several "modified" (physical) warmwater uses for Ohio waters and a "limited" use (limited resource water, LRW) for mostly small ephemeral or highly artificial waters (Yoder and Rankin, 1995). Table 2-2 summarizes the biological and physical characteristics of Ohio TALUs and the management consequences of these uses. Channelization typically maintained by county or municipal drainage and flood control efforts, particularly where such changes have been extensive, are the predominant cause of Modified and Limited aquatic life uses. Extensive channel modification in urban watersheds has led to some modified warmwater habitat (MWH) and LRW uses in urban areas. There has been discussion of developing specific "urban" aquatic life uses; however the complexity of multiple stressors and the need to find a clear link between the sources limiting aquatic life and feasible remediation is just now being addressed in urban settings (Barbour et al., 2006).

The TALUs in Ohio (EWH→LRW) reflect a gradient of landscape and direct physical changes, largely related to changes to instream habitat and associated hydrological features. Aquatic life uses and the classification strata based on ecoregion and stream size (headwater, wadeable, and boatable streams) provide the template for the biocriteria expectations for Ohio streams (see Box 2-2). Identification of the appropriate tiers for streams and UAA are a routine part of watershed monitoring in Ohio and are based on biological, habitat, and other supporting data. Any recommendations for changes in aquatic life uses are subject to public comment when the Ohio WQS are changed.

continues next page